		Hotsho	t Challenge	8DVM
		DATE:		
TUDENT #: _		TEACHER:		
	Evacuation Traini	ng Investigation S	Sheet	
art A: Determir aining map bel	ne the distance from your team's ow.	position (X) to the evac	cuation position (O)	on the
	Using a ruler measure each path from the Team Post (X) to the Evacuation Point (O). 1″=1 mile		\bigcirc	
	×			
	Path measured	Distance in inches	Distance in mile	es
	Leg 1			
	Leg 2			
Team	post to the evacuation point			
Total for	Path #1 (leg 1 + leg 2) (D _{path 1})			
Т	Fotal for Path #2 (D _{path 2})			
art B: Calculat	e the length of Path 2 using Pyth	agorean Therom. Show	your computations	in the

Path 2 The Hypotenuse

This curriculum is produced by Advanced Manufacturing & Prototyping Integrated to Unlock Potential (AMP-IT-UP), National Science Foundation Award #1238089. Georgia Institute of Technology's Center for Education Integrating Science, Mathematics, and Computing (CEISMC). Copyright © Georgia Institute of Technology All Rights Reserved 2017

	Hotshot Challenge	8DVM
NAME:	DATE:	
STUDENT #:	TEACHER:	

Pacing Data Collection Sheet

Use this sheet to record the data from the trials for your team.

1. Round One – Walking on the Road

Walk normal from the start point to the finish point.

Team member name	Distance walked (feet)	Time (seconds)
A		

2. Round Two – Walking through brush

Walk backwards from the start point to the finish point.

Team member name	Distance walked (feet)	Time (seconds)
A		

	Hotshot Challenge 8DVM
NAME:	DATE:
STUDENT #:	TEACHER:
P	acing Analysis Student Sheet

Using the formula for motion, d (distance) = r (rate) * t (time), and the information from *Pacing Data Collection Sheet* to find your team's rate when walking on road.

d (distance walked)	=	r (rate)	*	t (average time to walk)
	II	R _{road}	*	
	I	R _{brush}	*	

Show how you solve for rate below. Then, place your teams walking rate in the box provided.

R _{brush}	R_{brush}

Now that you have the team's rates we need to find the time to walk the paths we found in section 1.3.

Use the formula for motion, d (distance) = r (rate) * t (time), to find the time it would take for your team to arrive at the evacuation point. Remember the units for $D_{path 1} \& D_{path 2}$ were in miles and our rate uses feet. Covert miles into feet (1 mile = 5280 feet).

	d (distance walked)	=	r (rate)	*	t (time to walk)
Path 1		=		*	
Path 2		=		*	

Show how you solve for time below. Then, place your teams time in the box provided. Round to the nearest second. Then, convert the time to minutes (1 minute = 60 seconds).

Solve for t using Path 1	time in min	Solve for t using Path 2	time in min
This curriculum is produced by Advanced Manufactur Center for Education Integrating	ing & Prototyping Integrated to Unlock Potentia Science, Mathematics, and Computing (CEIS)	I (AMP-IT-UP), National Science Foundation Award #12380 MC). Copyright © Georgia Institute of Technology All Rights	B9. Georgia Institute of Technology's Reserved 2017

Hotshot Challenge 8DVM

	Hotshot Challenge 8DVM		
NAME:	DATE:		
STUDENT #:	TEACHER:		
Evacuation Route Data Sheet			
Find Trail Distance	es		
Find the distance fr	om each trailhead to the evacuation point using the Pythagorean Thereom. You		
will use the dark wi	de lines along Oak Lane and the vertical line to the evacuation point as the legs of		
your triangle. Each	trail will then be the hypontenuse. Calculate the hypontenuse by counting the grid		

marks for each leg, then use the Pythagorean Thereom. Finally convert the distance of the hypotenuse by converting grid marks to feet. Each grid mark represents 500 ft. When complete, transfer the trail distances to your *Evacuation Route Map*.

Trail	Distance along road trail head to vertical (Leg 1)	Vertical from road to evacuation point (Leg 2)	Trail Distance in Feet (Hypotenuse)
А			
В			
С			
D			
E			

Trail Terrain Rate

Using the information in the chart below, find your Hotshot team's rate along the trails with the indicated Terrain Rate Factor. Use your teams R_{road} from section 2.2 on your *Pacing Analysis Student Sheet*.

Trail	Rroad	X	Terrain Rate Factor		Trail Rate
А		Х	3/4	R _A =	
В		Х	2/3	R _B =	
С		Х	1/4	Rc=	
D		Х	1/3	R _D =	
E		Х	1/2	Re =	

This curriculum is produced by Advanced Manufacturing & Prototyping Integrated to Unlock Potential (AMP-IT-UP), National Science Foundation Award #1238089. Georgia Institute of Technology's Center for Education Integrating Science, Mathematics, and Computing (CEISMC) .Copyright © Georgia Institute of Technology All Rights Reserved 2017

					Hotshot C	Challenge	8DVM				
N	AME:	- #.									
Э	IUDENI	#									
	Emergency Evacutation Route Planning Sheet										
U: th lin	Using the distances along each route, your team's R_{road} , and the computed Trail Rates (R_A , R_B), find the time it will take for your team to arrive at the evacuation point using all five trailhead routes. Each line should contain a different segment of the route. Follow the example labeled "EX."										
	Team Name:										
	Route	Segment Description	Distance	Rate	Time in Seconds (round to nearest second)	Time in Min (round t nearest mir	utes o nute)				
	EX	(0,500) to B	3500 ft	4.24 ft/s	825 sec	14 min					
	EX	B to Evac Pt	8000 ft	2.8 ft/s	2,857 sec	44 min					
			11,500 ft		3,682 sec	58 min					

This curriculum is produced by Advanced Manufacturing & Prototyping Integrated to Unlock Potential (AMP-IT-UP), National Science Foundation Award #1238089. Georgia Institute of Technology's Center for Education Integrating Science, Mathematics, and Computing (CEISMC). Copyright © Georgia Institute of Technology All Rights Reserved 2017

							Hot	shot	Cha	lleng	e 8	DVM
NAME:					DATE:							
STUDENT #:					TEACHER:							
Arrival Timing Data Sheet Fill in the bar graph with each team's name and total time to arrive at the evacuation point. You will use this information to determine what time the helicopter should arrive when the evacuation call is made.												
160 150 140 130												

Hotshot Team

Based on the above graphed data, indicate the time the helicopter should arrive to guarantee that all teams arrive and the helicopter does not leave any team behind.

Time Evacuation Order Given	Evacuation Time

This curriculum is produced by Advanced Manufacturing & Prototyping Integrated to Unlock Potential (AMP-IT-UP), National Science Foundation Award #1238089. Georgia Institute of Technology's Center for Education Integrating Science, Mathematics, and Computing (CEISMC). Copyright © Georgia Institute of Technology All Rights Reserved 2017